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ABSTRACT 

Autonomy is a key enabling factor for robotic exploration. 
There continues to be a large gap between autonomy 
software (at the research level) and software that is ready for 
insertion into near-term space missions. The Mission 
Simulation Facility (MSF) project attempts to bridge this 
gap by providing a simulation framework and a suite of 
tools to support research and maturation of autonomy. The 
MSF has a proven basis in applications for surface planetary 
missions. Moreover, the innovative framework is readily 
adaptable to a large range of missions by providing 
component insertion and a mixed-fidelity simulation. 
This paper first describes the requirements for effective 
autonomy software development and then presents 
technology developed to this model that resulted in the 
Mission Simulation Toolkit (MST).  It further shows how 
this toolkit was applied to several projects and the lessons 
learned during the process. Finally, future directions and 
applications are presented. 

1. INTRODUCTION 

NASA Ames’ Mission Simulation Facility (MSF) is 
designed to address a problem often encountered by 
researchers in autonomy: how to carry out meaningful 
testing of autonomy software without real-world robotic 
platforms (costly in budget and time). The Mission 
Simulation Facility offers a simulated testing environment 
including robotic vehicles, terrains, sensors, and vehicle 
subsystems. The initial MSF release targets users 
researching autonomy for Mars rovers; however, the MSF 
technology solution is applicable to many other robotic 
domains. The MSF project has had four major releases of its 
software since it’s beginning in early 2001. The latest 
release is an Open Source release. The core technology 
supporting the MSF has been presented in [1], and the 
identification of the needs for a mission simulation 
environment supporting autonomy has been described in 
[2]. This paper describes how the MSF has successfully 
supported several research projects in robotic autonomy. 
 
The requirements for a simulator that supports autonomy 
are significantly different than those of conventional robot 
simulators. First, since high-level autonomy software is 

intended to control a complete robotic system, a variety of 
models (terrain, kinematics, dynamics, sensors, power, 
electromechanical subsystems, etc.) are required. Second, in 
order to test autonomy software in a range of situations, it is 
necessary to provide controllable variability and failure 
injection into these models. Third, because autonomy 
software is generally developed on a wide variety of 
platforms and may target robotic systems that are still under 
development, support for mixed operating system and 
flexible interfaces are also needed. 
 
The MSF addresses this particular set of requirements 
through the use of a distributed framework based on the 
High Level Architecture (HLA) standard [3]. A key feature 
of the MSF framework is the ability to plug in new models 
to replace existing ones with the same services. This enables 
significant simulation flexibility, particularly the mixing and 
control of fidelity level. The MSF toolset also provides: 
automatic code generation from robot interfaces defined 
with the Unified Modeling Language (UML), methods for 
maintaining synchronization across distributed simulation 
systems, XML-based robot description, and an environment 
server. Finally, the MSF supports a number of third-party 
products including dynamic models and terrain databases. 
 
To fully illustrate the capabilities and flexibility of the MSF, 
several experiments that involved testing of autonomous 
software using MSF simulators are presented. Results and 
lessons learned from these applications of MSF are then 
discussed. 

2. REQUIREMENTS ANALYSIS 

The MSF requires specific features to support robot 
autonomy in addition to typical requirements of 
conventional mechanical systems simulators, like response 
time, model accuracy or data logging. 
  
To illustrate the requirements analysis, a simple scenario 
depicted in Fig. 1 will be considered. In this scenario a rover 
is controlled by a Conditional Executive (CE) that is 
capable of executing plans containing floating branches 
triggered under specific conditions. The rover has been 
given a path for a long traverse, and during its drive it will 
acquire images of the environment. An on-board science 
processing software analyzes the images, identifies and 
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classifies rocks for scientific priorities. If interesting rocks 
("layered" in our example) are detected by the Image 
Analysis (IA) module, the rover will perform a detour to 
analyze the rock in more detail. The CE maximizes science 
return while trying to minimize the use of resources such as 
battery power and time. 

2.1. Multi-model with variable fidelity 

Autonomous software is intended to control complex 
systems comprising multiple resources in unstructured 
environments. Thus, a simulator replacing some robotic 
hardware interacting with its environments needs to model a 
range of behaviors.  In engineering, most simulators focus 
on a specific domain such as multi-body dynamics or 
modeling a camera with sophisticated algorithms and 
detailed models. In the MSF context, the models can often 
be simplified because the model outputs will be interpreted 
by autonomous software that reasons at a fairly high level of 
abstraction.  
 
In this example scenario where only the Conditional 
Executive is tested against the simulator, there is no need to 
generate photorealistic images of the terrain. The CE only 
uses the high level information produced by the IA: does the 
rock contain layers or not? Another aspect of the level of 
fidelity of the simulation comes from how much of the real 
rover’s control software is tested. Fig. 1 shows an 
application where the real RC is sending commands to the 
simulator. Often, to test autonomy, the rover control 
software is not needed or not available. For this reason, 
MSF provides some common modules like a “locomotor” 
(see Section 3.3) to emulate some robot functions. In this 
scenario, the simulator boundaries will extend to the dashed 
line in Fig. 1. 
 
The principal models required to support a full mission 
simulation fall in the following categories: 
 
Environment models for planetary simulation consist 
essentially of terrain data. However, terrain shape, which is 
usually represented in the form of an elevation map, is not 

sufficient and additional layers of information like rock 
properties need to be included. Various sources of terrain 
environments have been used in MSF. A common database 
interface to access the various types of environments has 
been created jointly with the Jet Propulsion Laboratory 
(JPL). Real terrain data is useful when the simulator is used 
during a field test for validation purpose (see Fig. 7). 
However, such data are often incomplete (holes in the 3D 
mesh) and lack high level type of information (only terrain 
texture is available). Synthetic terrains are therefore more 
useful in creating interesting scenarios for autonomy, and 
can offer continuous terrain patches over large distances. 
 
Robot movement models compute the robot posture 
according to the commands received by the actuators and 
the external environment (terrain) the robot interacts with. 
The posture is important for analyzing safety constraints 
and for locating the position and orientation of the 
instruments in the world. For current planetary simulations, 
robot kinematics is sufficient because of the very slow 
speed of today’s rovers. However, dynamic models are also 
useful because failures due to collision with a rock can be 
simulated. 
 
Actuator and Sensor models allow control of the simulated 
robot and feed the autonomous component with simulated 
values. Actuators are only modeled at a high level. Internal 
models of the electromechanical system or controller loop 
are not implemented because it usually does not affect the 
autonomous software. The sensors simulated are mostly 
proprioceptive sensors that are required to produce correct 
robot control. 
 
Instrument models allow the autonomous software to 
respond in mission like situations. However, as mentioned 
above, instruments can often be modeled as a combination 
of the hardware sensor and the data analysis software that 
generates the final, high-level output. Instruments are 
mainly exteroceptive sensors used for science analysis and 
are therefore modeled as black boxes when science 
algorithms are not tested. 
 

 
Fig. 1. Illustration of a simple scenario and component diagram showing the boundaries of the simulator 



Resource models are key components in the simulation, as 
one of the critical tasks of the autonomous software is to 
compute intelligent resource usage. Common resources are 
power and time, but other resources like memory usage, 
communication window and bandwidth are also considered 
for full mission simulations. It should be noted that unlike 
all the other models, the time model is not a component by 
itself, but a constraint operating in all the components. 
 
In addition to the multiple models required to simulate a 
mission scenario, the MSF framework – by design – 
supports mixed fidelity models in a simulation and allows 
the replacement of low fidelity models with higher fidelity 
models when required for specific scenarios. 

2.2. Variability and uncertainty injection 

To harness the power of the autonomous software being 
tested, the simulator needs to be able to generate variations 
in the scenario. In our example, it could be variable time 
and energy resources that influence the drive to a given 
point. The capability to inject failures is important for 
evaluating how the autonomous software will respond to 
them. A failure condition, in the example scenario, could 
involve the imager not being able to return data about the 
presence of a rock, or a stuck wheel. 

2.3. Multi-platform and flexible interfaces 

Another requirement that is specific to the MSF is to 
provide a tool that can be used in a research environment. 
Unlike a simulator that would be developed for testing a 
specific subsystem before the flight phase, the MSF 
supports research in autonomy where no computing 
platform requirements can be imposed. In addition, the 
scenarios needed for the simulator are often not well 
defined, thus requiring the MSF to adapt quickly to 
changing needs through easily reconfigurable interfaces. 

3. TECHNOLOGY DEVELOPED 

The MSF addresses this unique set of requirements through 
the use of a distributed framework composed of three 
elements: the communication layer, a set of interfaces, and a 
suite of components implementing the basic models 
required for a typical simulation scenario. 

3.1. Communication Layer 

The MSF is based on the High Level Architecture (HLA) 
standard designed for simulations reuse and interoperability. 
The HLA implementation provides a publish-subscribe 
scheme with services to time-synchronize components. The 
MSF has developed a layer on top of HLA, which abstracts 
several HLA services and automatically ensures the 
enforcement of HLA rules. This additional layer simplifies 
the integration of new components into MSF simulations 
while helping component developers to observe all the HLA 

conventions without having to master all the HLA 
intrinsics. This approach allows new models to be plugged 
in to replace existing ones with the same services, thus 
providing significant simulation flexibility, particularly in 
the mixing and control of fidelity level.  

3.2. Interfaces 

The HLA methods of describing interfaces were insufficient 
(for fully object oriented paradigms or strong variable 
typing needs) for supporting the MSF requirements, 
therefore a process to generate component interfaces has 
been put in place. The components composing a simulator 
are using MSF’s Communication Objects (CO) to interact 
with each other. Components see CO’s as if they were local 
objects, and can set their variables or call methods on them. 
CO’s are defined using the Unified Model Language 
(UML). From the UML model, implementation classes are 
generated, that internally use HLA objects and interactions. 
The use of automatic code generation reduces the risk of 
coding errors, offers great flexibility, and allows rapid 
creation of a new set of communication objects or extension 
of an existing one. 

3.3. Components 

The charter of the MSF was not to develop high fidelity 
models, but rather to integrate existing ones in its 
framework. However, the MSF does include a suite of basic 
components that are essential for creating a simulator. These 
components are interchangeable with high fidelity models 
when needed.  Below is a description of the core models 
used in most simulations. 
 
The Simulation Controller manages the startup of all the 
participating components of a simulation and gives the user 
control of the simulation (start, pause, stop, reset, quit). 

The Mission Simulation Dynamics Engine (MSDE) is a 
dynamic simulator based on the Open Dynamics Engine 
(ODE) software. MSDE simulates the interaction of the 
rover with the terrain during rover movements. 

The Locomotor is a generic model that translates high-level 
robot movement commands into wheel motor speed. The 
Locomotor works for all wheeled rovers that are supported 
by the XML robot description file (e.g. no steered wheels, 
all wheel steering).  

A generic power model computes the load put on the 
battery by the various motors, sensors, and instruments. The 
model includes a GUI that allows a user to set the battery 
capacity and obtain readings of the load and battery charge. 

HLAB is both a debugging/analysis tool and a command 
logger. Users can display state variables of all 
Communication Objects in the simulation and execute 
available methods on them. During simulation, HLAB acts 
as the command logger, saving each time-stamped 
interaction. 



Viz is a powerful real-time 3D visualization software 
developed at Ames by the Intelligent Robotics Group [4]. 
Viz provides scene graph management, realistic 3D 
rendering with lighting model and shadow casting using real 
ephemerides. The MSF has created a plug-in for Viz, 
allowing it to connect to the simulation, and display any 3D 
object participating in the simulation. 
 
Most MSF components are generic simulators that can be 
configured through parameters. For this purpose a robot 
descriptor has been designed using an XML file format. 
MSF XML robot files contain information about the various 
subsystems of the robot (battery, instruments, etc.), its 
physical configuration (kinematics) and properties (like 
maximum speed). Thus, every component can extract the 
required information for the simulated robot from the same 
common file description. 

4. APPLICATIONS 

The MST has been continuously utilized by several projects 
inside NASA Ames since its first release. Three factors 
have influenced the maturation of MSF: 1) the MSF 
roadmap to develop a functional simulator for autonomy 
support, 2) the feedback from the users using the MSF to 
test their applications and 3) the integration of additional 
components (internally developed or externally provided). 
Due to the frequent interaction with its users, and the 
dynamics of the research environment, the MSF software 
continuously evolved to support new problems. The MSF 
software is not a single simulator, but a framework 
permitting the construction of a variety of simulators. The 
MSF communication layer remains the same for any 
application. The MSF interfaces do not require 
modifications if the application domain does not change 
(planetary rover), but the interfaces could be extended for a 
specific application. MSF simulators are tailored for a 

particular application by combining a set of components 
that implement the required models. Some of the 
components are common to most simulations, while others 
have been developed for a specific purpose. This section 
presents three different configurations representative of 
MSF evolution, with an increasing number of components 
providing more complex mission simulation. 

 
Fig. 2. Simulator configuration for VIPER 

4.1. VIPER  

The goal of the Virtual Intelligent Planetary Rover 
Exploration (VIPER) project was to provide users with a 
virtual environment in which they could visualize rover 
behavior and possible execution outcomes of a plan under 
construction. The initial VIPER system presented in [5] 
used ad-hoc communication between the components. 
VIPER was later updated to use the first release of the MSF 
framework. The system was composed from three 
components shown in Fig. 2, linked by the MSF framework 
with minimum customization: conditional plan execution, 
rover behavior simulation, and 3D visualization. 
 
Plan execution occurred through a Conditional Executive 
that made decisions based on rules expressed in the 
Contingent Rover Language (CRL) [6].  The VirtualRobot 
kinematics model can generate inverse and direct 
kinematics for any robot structure (described in a 
configuration file), and was used to compute the rover 
behavior on a synthetic terrain. Visualization of the rover 
interacting with the terrain occurred in Viz. Due to the 
flexibility of MSF, integration of the three components to 
create VIPER was achieved in a very short time. Fig. 3 
shows a scenario where the Conditional Executive was 
executing floating branches regarding the conditions 
encountered by the rover. 

 
Fig. 3. Simulated K9 rover in a limit configuration driving 

on a synthetic terrain. 



4.2. REEF 

Apex, developed at Ames, is a reactive, procedure-based 
planner/scheduler used for mission level task execution [7]. 
The Apex group has used the MSF to create a prototype of 
the Requirements Elicitation and Evaluation Facility 
(REEF) software for a proof of concept demonstration. The 
objective of this software was to elicit the Mission Planning 
and Execution system (MPE) behavior requirements from 
diverse mission experts and then to evaluate the MPE 
behavior specifications in diverse scenarios. Fig. 4 depicts 
the combined software architecture. The box labeled “MPE 
Proxy” is Apex running a simulation of the MPE.  The user 
enters rover behavior through the Apex GUI called Sherpa, 
and defines the scenario via the scenario manager. The 
rover proxy is the interface through which Apex and the 
Scenario Manager execute commands to the rover via the 
MSF framework. Viz, the 3-D visualization tool, and 
ROAMS (dynamic rover model, more details in section 4.3) 
are tools that were already integrated with MSF.  
 
In one of the scenarios the rover had the task to take contact 
measurement at three science targets and to take a 
panoramic picture. Unexpected battery loss was one of the 
anomalies that were injected during the simulation. The 
programmed response of the rover was to abort all 
scheduled tasks other than direct communication to Earth. 
An expert observer using the REEF software noticed that 
aborting the measurement with the arm extended 
automatically invokes an arm stow task. As a consequence, 
the observer changed the requirements to forbid the arm 
stow to prevent any tasks requiring power. 
 
The team developing REEF attested to the effectiveness of 
the MSF since they were able to integrate the robot 
simulation environment in a matter of days. Because Apex 

is written in Lisp, they created a Rover Proxy on the Lisp 
side, which made foreign function calls to objects of the 
C++ MSF library. Although MSF is capable of running 
simulations distributed on several computers, the team was 
able to demonstrate REEF running on a single laptop. Fig. 5 
shows the 3D display during this experiment (other REEF 
components not shown). 

 
Fig. 4. Software architecture in the REEF-MSF experiment. 

4.3. SCIP 

While developing MSF, our group closely collaborated with 
researchers in the Autonomous Systems and Robotics 
(ASR) at NASA Ames Research Center. During the last 
couple of years, a major effort has been the development of 
Single Cycle Instrument Placement (SCIP) capabilities [8]. 
The demonstration was executed using Ames’s six wheeled 
rover with rocker-bogey suspension named K9 (see model 
in Fig. 3). The Mission Simulation Facility (MSF) provided 
the developers of the Planner and the Conditional Executive 
with a simulation environment to test their plans and 
software algorithms.  Fig. 6 shows the components that 
were involved in the simulations, and a description of the 
components specific to this application is given below: 
 
The robot simulation was provided through a high fidelity 
dynamics model, ROAMS [9], developed at the NASA 
JPL. ROAMS can compute the kinematics and/or dynamics 
of planetary type rovers driving on terrains. In addition, the 
ROAMS library includes several rover software modules 
that are used in real missions. For this application, ROAMS 
provided a model of a K9 rover with obstacle avoidance.  
As with most MSF simulators, Viz represented a view of 
the rover interacting with the terrain and the science targets. 
However in this scenario, Viz was also used to define high 
level plans by selecting targets in the environment. In 
addition, a camera model simulated the time to take the 

 
Fig. 5. Rover driving on a synthetic terrain while showing 

its detector range during the APEX experiment. 



 
Fig. 6. Simulator configuration to support the SCIP application 

(note that the MSF Transport Layer only carries the references to the databases content, not the actual database data). 

picture and created a view cone displayed in Viz when a 
picture was taken. 
 
A model representing the target tracking capabilities was 
developed as an MSF model. Target tracking was 
represented as a function of the distance between the rover 
and the target and the rover’s view of the target relative to 
its stored image. The Conditional Executive switched 
between branches in response to the current confidence in 
the tracking system. The “Blue Rock Detector” model was 
developed to simulate serendipitous detection of special 
rock formation (e.g. layered). This model “detected” rocks, 
which exhibited certain attributes and utilities defined in a 
file, and that fell into the detectors range. The Conditional 
Executive triggered floating branches based on the status of 
the detector.  
 
The K9 subsystems that were modeled included power 
resources and a statistical representation of instrument 
placement failure. Instrument placement is a complex series 
of processes that involve navigating the rover to its optimal 
position, taking an image of the target, finding possible 
target areas for instrument placement, and finally deploying 
the arm to place the instrument. Failure may occur during 
any of these steps. The instrument placement failure 
statistical model could also be overridden by manually 
selecting the outcome of the instrument placement. 
 
The MSF simulator was used during several phases of the 
project. First the advanced features of the Conditional 
Executive were tested. Then the consistency of plans 
generated by the planner was evaluated. And finally, during 
the real demonstration, actual plans were validated in 
simulation before being sent to the K9 rover.  

5. RESULTS AND LESSONS LEARNED 

The experiments conducted with MSF based simulators 
generated two types of benefits for the autonomous software 

developers: evaluation of the algorithms’ behaviors and 
verification of the software. 
 
First, MSF is used as a platform enabling the rapid test of 
autonomous behaviors without requiring the hardware 
platform to be available. This usage ranges from simple 
runs testing that specific algorithms respond correctly to the 
situation, to simulation of a full system. For example, during 
an autonomy technology demonstration at Ames, MSF was 
used during the field test to validate plans generated by the 
planner. A precise model of the terrain for the simulation 
was obtained by using data collected by the actual rover 
from the Marscape (Ames outdoor Mars analog). This 
ensured that the simulated rover would encounter the same 
situations as the actual rover on the real terrain. Before 
sending a plan to the rover, it was executed in simulation by 
the same Conditional Executive that ran on-board the rover. 
The simulation’s main advantage is the possibility of testing 
various branches of the plan by modifying some variables 
(like available power) or changing the result of some actions 
(like failure during the arm placement). 
 
Second, MSF was used to test the correctness of the 
autonomous software (basically discover bugs in the code). 
MSF simulations of course do not replace formal software 
validation or testing, but have shown to help discovering 
problems that often only appear in real situations. For 
example, a race condition in the Conditional Executive  –
that had never been seen before on the rover because of the 
limited number of runs one can actually perform on the real 
rover– was encountered in simulation. By putting the 
autonomous software into a number of simulation 
configurations, it was possible to identify the problem 
correctly. Another problem at a higher level was discovered 
in the planner in a similar way. Observing the simulated 
rover executing a plan with complex branches pointed to 
some inconsistencies in the plan that led to the identification 
of a bug (in the plan generation process) that was quickly 
fixed. 



 
Over four years of simulator development for autonomous 
rovers, in direct collaboration with users, allowed the MSF 
team to collect some useful lessons summarized below:  
• Simulators at the mission level are definitely missing and 

researchers in autonomy are eager to use them. 
• Simulators supporting research (vs. engineering) require 

more flexibility to adapt to moving design targets. 
• Good analysis of required level of fidelity of the models 

is critical to avoid wasting time on developing 
unnecessary high quality components.  

• Users most often requested a GUI for setting 
failure/status on models (tracking, IP, Power model, 
rover placement) instead of probabilistic models 

• The MSF dependency on initially freely available 
implementation of HLA from DMSO, led to additional 
work when this middle-ware later became only 
commercially available. 

• Adopting a standard like HLA is good practice, but not 
necessary if interoperability with multiple simulators is 
not required. 

• Multi-platform support is not enough, multi-language 
bindings are required. Initially all MSF users were using 
C++, but recently new projects considering to use MSF 
are also using Java and C#. 

6. FUTURE DIRECTIONS 

6.1. Mission Simulation Toolkit 

The Mission Simulation Toolkit (MST) is the software 

package that the MSF has released to the Ames Open 
Source repository in Spring 2005 [10].  The toolkit includes 
the HLA-based simulation framework, a library of 
Communication Objects for the domain of terrestrial surface 
robot missions, and a number of simulation components. In 
addition to the components described in Section 3.3 
(simulation controller, dynamic engine, locomotor, power 
model, data analysis/logger), the MST also includes the two 
other components: 1) an in-house C-Executive that allows 
scripting simple scenarios in a C like language, and 2) a 
generic Range Sensor which provides point, line or 2D 
(depth map) distance information from the sensor to the 
terrain. 
 
These components provide a MSF user with the basic tools 
necessary to simulate science mission scenarios involving 
rovers. Any of these basic modules can be exchanged with 
higher fidelity models that conform to the same interface or 
additional models can be connected to extend the simulation 
capability. For the current release of MST, users need to 
have access to a HLA Runtime Interface (RTI) 
implementation.  Work is in progress to remove this 
dependency by integrating MST with the Federated 
Simulations Development Kit (FDK) [11], freely available 
from the PADS research group at Georgia Tech.  
 

6.2. End-To-End Mission Modeling and Simulation 
Environment 

End-To-End Mission Modeling and Simulation 
Environment (EMMSE) is a new project at the Ames 

 
Fig. 7. Displays of several components during a simulation showing a rover taking an image while executing an actual plan. 
The virtual rover drives on a terrain model generated from data collected by the real rover during the SCIP field experiment. 



Research Center that is focused on developing a mixed 
fidelity end-to-end mission simulation capability to 
baseline, verify and validate human and robot mission 
operations.  MST will also serve as the simulation 
framework for integrating a number of new and existing 
simulators into an environment that we call Mission 
Operations Design and Analysis Tool (MODAT). MODAT 
will support modeling and simulation of end-to-end human-
robot missions including ground and surface operations 
(work process and procedures), mission systems, vehicles, 
robots, space telecommunications and telemetry data. 
 
While analyzing the requirements of the system and of the 
individual components, several challenges have been 
identified including support for simulators written in 
different languages, multiple platforms, event and discrete 
time-step based time synchronization, mixing high and low 
fidelity models, and running simulators at different 
granularity.  One of the more potent challenges will be to 
identify a time synchronization scheme that will support all 
of the following features: 1) rapid high-level simulation of a 
days worth of mission activity in minutes; 2) simulation of 
rover behavior in approximately real time speed for 
viewing; and 3) simulation of complex processes (e.g. a 
Moessbauer instrument interacting with an environment 
feature to create a spectrum) that have high computational 
demands and that are much slower than the actual 
measurements. These and other challenges that will 
undoubtedly be uncovered as the project progresses will 
provide a critical test for MST. Judging from our experience 
with tackling other difficult challenges, we are confident 
that our software will prove itself against these demands and 
grow while overcoming these obstacles. 

7. CONCLUSION 

We have evaluated the requirements that are specific to 
simulations of terrestrial rover missions. We pointed out 
that low-fidelity models of robotic systems are often 
sufficient to test autonomy algorithms that make decisions 
at a high level. We showed that there is a need for being 
able to replace low-fidelity models with high fidelity 
models to allow modeling certain processes in more detail. 
MSF has been presented as a flexible simulation 
environment that fosters to the needs of researchers who 
want to test their autonomy software in a mission 
simulation. The description of the applications of MSF to 
three specific research problems, each with unique 
requirements, demonstrates the ability of MSF to adapt to a 
variety of different systems and demands. We hope in this 
paper we have demonstrated the convenience, flexibility, 
and ease with which complex simulations can be created 
using MSF and how it facilitates integrating existing 
simulators into a mission simulation. 
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